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Abstract. We propose a method for entangling a system of two-level atoms in photonic crystals. The atoms
are assumed to move in void regions of a photonic crystal. The interaction between the atoms is mediated
either via a defect mode or via a resonant dipole-dipole interaction. We show that these interactions can
produce pure entangled atomic states. We analyze the problem with parameters typical for currently
existing photonic crystals and Rydberg atoms and we show that the atoms can emerge from photonic
crystals in entangled states. Depending on the linear dimensions of the crystal we estimate that a pair of
atoms entangled in a photonic crystal can be separated by tens of centimeters.

PACS. 32.80.-t Photon interactions with atoms – 42.50.-p Quantum optics – 03.65.Bz Foundations, theory
of measurement, miscellaneous theories (including Aharonov-Bohm effect, Bell inequalities, Berry’s phase)

1 Introduction

Quantum entanglement is one of the most remarkable fea-
tures of quantum mechanics. Coherent control of the en-
tanglement between quantum systems has attracted lot
of attention mainly because of its potential application in
quantum information processing [1]. Simultaneously, ex-
perimental investigation of the entanglement allows us to
test basic postulates of quantum mechanics and to an-
swer fundamental epistemological questions. These ques-
tions are related to the original Gedanken experiment of
Einstein, Podolsky and Rosen [2] which triggered discus-
sions about the non-locality of quantum mechanics and
motivated experimental proposals to test whether quan-
tum mechanics is a complete non-local theory. The first
experimental confirmation of the violation of Bell’s in-
equalities [3] was performed using entangled photons [4].
Recently Zeilinger et al. has performed several experi-
ments testing Bell inequalities over large distances [5]
as well as experiments in which three photons has been
entangled [6] and entanglement swapping has been per-
formed [7].

Another challenge is to entangle other quantum sys-
tems – such as atoms. One of the first proposals for such
an experiment is described in reference [8]. Other propos-
als have been presented in references [9,10]. The authors
of these schemes proposed techniques to create entangled
atoms in microwave single-mode cavities. Recently, con-
trolled entanglement between atoms separated approxi-
mately by 10 mm interacting with an electromagnetic field
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in a high-Q cavity has been experimentally realized [11].
In addition, trapped ions have been created in entangled
states [12].

In this paper we propose a simple scheme for entan-
gling atoms in photonic crystals. Photonic crystals are
artificially created three-dimensional periodic dielectric
materials which exhibit a frequency gap or several gaps
in spectrum of propagating electromagnetic (EM) waves
[13,14]. An EM wave with its frequency from the gap can
not propagate in the structure in any direction. Photonic
crystals operating at microwave frequencies were success-
fully created in a number of laboratories [15]. They consist
of a solid dielectric and empty regions. The periodicity of a
photonic crystal can be destroyed by removing or adding
a piece of material which creates a defect EM mode in
the structure. This mode is spatially localized around the
region of the defect. The frequency of the mode and the
spatial modulation of its electric field amplitude depends
on properties of the defect [16–19]. It means that one can
adjust parameters of the defect mode by creating a suit-
able defect in the crystal. In particular, the spatial depen-
dence of the mode amplitude can be adjusted to particu-
lar needs. The quality factor of a single mode in a metallic
cavity can be of the order of 108, and similar values can
be reached for a single defect mode in a photonic crystal
[20]. Microwave photonic crystals could therefore be used
for experiments with Rydberg atoms [20,21].

In this paper we consider two interactions via which
one can produce entangled atoms. Firstly, we show that it
is possible to generate entangled atoms without a defect
mode, using the action of the resonant dipole-dipole in-
teraction (RDDI) [22,23] mediated by off-resonant modes
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of photonic band continue. Secondly, we explore the
scheme in which the atoms become mutually entangled
due to the interaction with the defect-field mode.

The paper is organized as follows: basic features of the
proposed setup are described in Section 2. In Section 3
we discuss how the atoms in photonic crystals can be
entangled via the resonant dipole-dipole interaction. In
Section 4 we study in detail the entanglement of atoms
which interact with a single defect mode in the photonic
crystal. In Section 5 we conclude the paper with some
remarks.

2 Setup of the scheme

We consider two mechanisms through which a system of
identical atoms can be entangled in photonic crystals. We
assume that the atoms are modeled by two-level systems
having their transition frequencies in a photonic bandgap
(PBG).

The first mechanism is the RDDI mediated by off-
resonant modes of the photonic-band continue (see the
Hamiltonian (8)). This interaction has been analyzed in
detail by Kurizki [24] and John and Wang [22] as well
as by John and Quang [23]. These authors have consid-
ered a system of two two-level atoms. It has been been
shown that if one of the atoms is excited and the other
one is in its ground state, then they can exchange excita-
tion in spite of the fact that their transitions frequencies
are in a PBG and spontaneous emission is nearly totally
suppressed. The RDDI can be understood as an energy
exchange via a localized field [22]. This light tunneling (or
photon-hopping conduction) can be very efficient when
the distance between the atoms is much smaller than the
light wavelength. The RDDI can occur either in free space
or in a cavity. However, in free space the excitation is ir-
reversibly radiated into the continuum of the field modes
after a very short time (given by Fermi’s Golden rule) and
the entanglement between the atoms deteriorates rapidly.

The second mechanism is due to an excitation ex-
change via a defect mode which is resonant (or nearly
resonant) with the atoms. This type of interaction explic-
itly involves a quantized defect mode and is described by
the Hamiltonian (10).

These two interactions can also occur simultaneously.
As we will see, the second mechanism is much more ef-
ficient and allows a coherent control over the process of
entanglement. The first mechanism can be neglected in
many cases, especially when the atoms have their transi-
tion frequencies near the center of a wide PBG and their
distance is not much smaller than the wavelength of the
resonant light.

In what follows we describe the basic setup of the pro-
posed experiment in the case when the atoms interact only
via the defect mode. We consider the photonic crystal of
the geometry designed by Yablonovitch et al. [15,20] (see
Fig. 1) although other appropriate geometries can be used
as well. The periodic structure is created by drilling cylin-
drical holes in a bulk material. In Figure 1 we plot only
cylindrical holes intersecting in the center of the (cubic)
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Fig. 1. A schematic description of the physical situation. We
display only three of many cylindrical holes in the crystal.

crystal. We assume (except Sect. 3) that there is a defect
of the crystal periodicity near the region where the dis-
played cylinders are crossing. This defect creates a defect
mode near the center of the photonic bandgap. The defect-
field mode is initially prepared in its vacuum state. This
could be a problem because of the presence of microwave
thermal photons. Performing the experiment at low tem-
peratures (≤ 10 K) could, at least in principle, solve this
obstacle. Let us assume that one of the three atoms (let say
the atom A) is prepared initially in its excited state while
the other two atoms (B and C) are initially in their ground
states. After the preparation the atoms are injected into
cylindrical void regions of the crystal at the same time.
Firstly the atoms “fly” freely in the void cylinders out-
side the defect-field. Transition frequencies of the atoms
lie inside the wide PBG. When the atoms enter the defect
region they start to interact with the single defect-field
mode. And then again, after they leave the defect region
they evolve freely. States of the atoms are detected at the
exit from the crystal.

We consider the following numerical values for the
setup. The crystal is a cube of the side L ≈ 20 cm. The
cylindrical holes are drilled at the angle Θ = 35.26◦ with
the vertical axis. Linear dimensions of the defect-mode re-
gion are comparable with the lattice constant of the struc-
ture. The frequencies of the defect mode and the atomic
transition are ω0/(2π) = ω/(2π) = 21.50651 GHz, i.e. the
same as transitions used in experiments with microwave
cavities [21]. This frequency lies inside the wide photonic
bandgap [16] providing the crystal is made from a dielec-
tric with a refractive index (at microwaves) 3.6, the vol-
ume filling fraction is 78% and the side of an elementary
cube is a ≈ 16.3 mm. We use this value of a to calcu-
late the parameter k = π/a (see Eq. (12)). These values
of the parameters are feasible with current experimen-
tal techniques. In the experiments of Yablonovitch et al.
[15,16] the side of an elementary cube was 11 mm and
the diameter of the cylindrical holes was 5.16 mm. This
implies that in our scheme the diameter of the cylindrical
holes should be about 7.65 mm.

If the exited (ground) state of the atom j (j = A,B,C)
is denoted as |ej〉 (|gj〉) and the n-photon state of the
single-mode defect field is denoted as |n〉 then the initial
state of the system under consideration can be written as

|Ψ(0)〉 = |eA〉 ⊗ |gB〉 ⊗ |gC〉 ⊗ |0〉 ≡ |eA, gB, gC , 0〉. (1)
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When we assume that in the defect region the atom-field
interaction is governed by the Hamiltonian in the dipole
and rotating wave approximations (see below in Sect. 4)
then the final state of the system reads

|Ψ(t)〉 = a(t)|eA, gB, gC , 0〉+ b(t)|gA, eB, gC , 0〉
+ c(t)|gA, gB, eC , 0〉+ γ(t)|gA, gB, gC , 1〉, (2)

where t is the time at which we detect the internal states
of the atoms at the exit of the crystal. The final values of
the amplitudes a, b, c and γ depend on a particular setup
of the experiment including the coupling parameters and
velocities of the atoms. For completeness of the description
we specify trajectories rj(t) of the three atoms which can
move along the axes of the three void regions

rj(t) = rj(0) + vjt; j = A,B,C (3)

with the vectors rj(0) and vj specified as

rA(0) =
L

4

{
tanΘ,−

√
3 tanΘ,−2

}
,

vA =
vA
2

{
− sinΘ,

√
3 sinΘ, 2 cosΘ

}
, (4)

for the atom A. While for the other two atoms (B and C)
we have

rB(0) =
L

4

{
tanΘ,

√
3 tanΘ,−2

}
,

vB =
vB
2

{
− sinΘ,−

√
3 sinΘ, 2 cosΘ

}
, (5)

and

rC(0) =
L

2
{− tanΘ, 0,−1} ,

vC = vC {sinΘ, 0, cosΘ} . (6)

Here we assume the origin of the coordinates in the center
of the cube crystal with the side of the length L; Θ is the
angle between the axes of the cylinders and the z direction.

3 Entanglement via resonant dipole-dipole
interaction

In this section we consider just two identical atoms (A
and B) which move in the crystal as it is described above.
Here we assume that there is no defect mode in the crystal.
The atoms move inside the crystal with constant veloci-
ties. The recoil effect due to the interaction with the EM
field is neglected because the atoms are relatively heavy
particles. The interaction between the atoms and the EM
field modes inside the crystal is described by the Hamil-
tonian in the electric-dipole approximation

H = ~ω
∑
j=A,B

σjz + ~
∑
λ

ωλa
†
λaλ

− 1
ε0
µ(A) ·D(rA)− 1

ε0
µ(B) ·D(rB), (7)

where aλ and a†λ are the annihilation and creation oper-
ators of the field mode labeled by λ, D(r) is the trans-
verse displacement-field operator, µ(A) and µ(B) are the
atomic dipole operators. When the atomic transition fre-
quencies are far from the regions of abrupt changes in
the density of modes, and the distance R of the atoms is
much less than the resonant wavelength λ, then the Hamil-
tonian (7) can be approximated as (for more details see
Ref. [23])

Heff = ~ω
∑
j=A,B

σjz + ~
(
JABσ

A
+σ

B
− + JBAσ

A
−σ

B
+

)
, (8)

where σx± are raising and lowering operators of the atoms
(x = A,B) and JAB is a matrix element for the effective
description of the RDDI [22]. For qualitative estimations,
we will use JAB evaluated under the assumption that the
density of the EM modes is the same as in free space. In
this case we use the formula we can utilize the expression
derived in reference [25]

~JAB = µgei (A)µegj (B)
1

4πε0R3

×
[
(δij − 3R̂iR̂j)(cos kAR+ kAR sin kAR)

− (δij − R̂iR̂j)k2
AR

2 cos(kAR)
]
, (9)

where kA ≡ ω/c, µeg is the absolute value of the atomic
dipole matrix element, R̂i are the components of the unit
vector starting at the position of the atom A and oriented
towards the atom B. We assume the summation over the
repeated indices. The above expression for JAB was de-
rived for atoms in a free space, but in the limit R� λ it
can be also used as a good approximation for a description
of the RDDI effects in photonic crystals [22]. As we will see
later the RDDI between the moving Rydberg atoms (with
velocities of the order of 102 m s−1 or higher) is important
only in the regime with R � λ. Therefore we can safely
use the Hamiltonian (8) for our approximate description.

In what follows we will study the time evolution of
the atoms initially prepared in the state |Ψ(0)〉 = |eA, gB〉
which is governed by the effective Hamiltonian (8) with
time-dependent JAB (which is due to the fact that the
atoms are moving through the crystal). We show that the
RDDI can in principle be used for controlling the entangle-
ment between the atoms. We have solved the correspond-
ing Schrödinger equation numerically. We have used the
physical parameters typical for Rydberg atoms and cur-
rently existing photonic crystals (see Sect. 2). In Figure 2
we plot the results for the time-dependent atomic popu-
lations. We have chosen the atomic trajectories as spec-
ified in the previous section but we added a small value
(0.05−0.3 mm) to the initial xA(0) coordinate so that the
trajectory of the atom A is parallel but not identical with
the axis of the cylinder. This prevents the collision of the
atoms. Three curves in Figure 2 correspond to three differ-
ent values of xA(0) specified by the minimal distance Rmin

between the atoms when they fly through the crystal. Both
atomic dipoles are oriented in the x-direction. In our calcu-
lations we have taken into account that the atoms interact
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Fig. 2. The time evolution of the population of the upper
level of the atom A. The atoms interact according to effective
Hamiltonian (8).

only when they are near the center of the crystal. This in-
teraction region has been taken to be the cubic region of
the side 2 cm. The atomic velocities have been chosen to
be vA = vB = 200 m s−1, i.e. they are of the same order as
in the micromaser experiments [11,21]. The atomic dipole
moment has been taken to be µeg/e ≈ 6.7×10−7 m (where
e is the proton charge) from the experimental parameters
in reference [21].

Taking into account that the physical conditions are
chosen such that the EM field is adiabatically eliminated
from the interaction (see the effective Hamiltonian (8)) the
two atoms due to the unitarity of the evolution remain in a
pure state |Ψ(t)〉AB = a(t)|eA, gB〉+ b(t)|gA, eB〉 with the
amplitudes a(t) and b(t) which depend on the RDDI. From
here it follows that due to the RDDI the two atoms be-
come entangled. The degree of entanglement in the present
case can be quantified with the help of the von Neumann
entropy S = −Tr[ρ̂ ln ρ̂] of each individual atom for which
we have S = −|a(t)|2 ln |a(t)|2 − |b(t)|2 ln |b(t)|2. In other
words the degree of the entanglement depends on the pop-
ulation of internal levels of the atoms and the highest de-
gree of entanglement is attained for |a(t)|2 = |b(t)|2 = 1/2.

As seen from Figure 2 the population of the excited
state of the atom A depends on the minimal distance
Rmin between the atoms when they fly through the crys-
tal. From our numerical investigation it follows that the
atoms are most entangled for Rmin ' 0.05 mm. However
we note that with present techniques the control over the
position of the atoms in the configuration considered here
is about ±1 mm [11]. Consequently, the RDDI is not very
suitable for a coherent control of entanglement between
the atoms in photonic crystals. In the following section
we consider entanglement through a defect mode when
the currently available precision control is sufficient.

4 Entanglement via a defect mode

Let us consider the interaction of the atoms with a single
defect-field mode in the dipole and the rotating-wave ap-
proximations. We assume that the distance between the

atoms is always sufficiently large such that they do not in-
teract via RDDI. The corresponding Hamiltonian can be
written as

H = ~ω
∑

j=A,B,C

σjz + ~ω0a
†a

+ ~
∑

j=A,B,C

[
G(rj)σ

j
+a+G∗(rj)σ

j
−a
]
, (10)

where ω0 is the mode frequency (which we assume to be
equal to the atomic transition frequency ω), σj± are the
atomic raising and lowering operators and rA and rB are
the positions of the atoms. The position dependence of
the coupling parameters G(rj) can be expressed as

G(rj) = G0ε ·Dj f(rj), (11)

where f(r) is the field-mode amplitude at the position
r, ε is the electric-field polarization direction of the de-
fect mode and Dj is a unit vector in the direction of the
atomic dipole matrix element of the atom j. It is known
that the spatial dependence of the defect-mode amplitude
is an oscillating function which decays exponentially as
a function of the distance [17]. A particular profile of the
spatial dependence of the defect mode can be adjusted via
a properly generated defect of the periodicity. A rigorous
calculation of the EM field in the presence of a defect in
a 3D photonic crystal can be a difficult task. In this pa-
per we use a model profile of the spatial dependence of
the electric field. Similar profiles have already been cre-
ated in existing photonic crystals [16–19]. We note that
for the purpose of the proposed experiment a complete
information about the mode shape is not needed. The re-
sults of the experiment depend only on the shape along
the trajectories of the atoms. In what follows we use the
profile

f(r) = exp
[
−|r−R0|

Rdef

]
sin(k · r + Φ), (12)

where R0 is the position around which the mode is local-
ized, Rdef is a parameter (defect-mode radius) describing
the rate of the exponential decay of the mode envelope, Φ
is a phase factor and k is the parameter describing spa-
tial oscillations of the field mode. We chose its magnitude
to be k = π/a where a is the value of the side of an el-
ementary cubic cell in the photonic crystal. We consider
the constant Rdef comparable with a. We estimate the
value of the coupling constant G0 from microcavity ex-
periments [21]

G0 =
√
Vcav

Veff
Ω, (13)

where Vcav is the modal volume of the microcavity mode,
Veff is the effective modal volume of the defect mode and
Ω is the vacuum Rabi frequency in the microwave experi-
ment. The numerical values are [21]: Vcav = 11.5 cm3 and
Ω = 43 kHz. When we consider the transitions between
levels 63P3/2 and 61D3/2 of the rubidium atoms, then the
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atomic transition frequency is ω/(2π) = 21506.51 MHz.
Finally, the effective modal volume can be approxi-
mated as

Veff =
4
3
π(2Rdef)3. (14)

Because the atoms are moving the coupling parameters
are time dependent (in what follows we will use the nota-
tion Gj(t)). We consider positions of the atoms given by
equations (4, 5). In some cases we add a small value to
xA(0) given by (4) to prevent the atoms to collide in the
center of the crystal. Details of the geometry of the pro-
posed experiment are given in Section 2 and in Figure 1.

Once we have specified all model parameters we can
solve the Schrödinger equation for the system which is
supposed to be initially prepared in the state |Ψ(0)〉 =
|eA, gB, gC , 0〉. Due to the fact that the number of excita-
tions is an integral of motion in the present case the state
vector at time t > 0 has the form (2) and the correspond-
ing Schrödinger equation can be rewritten into a set of
a system of linear differential equations. These equations
can be solved analytically for time-independent coupling
constants Gj(t) which is not our case. Therefore we have
to integrate the equations numerically.

4.1 One atom

We start our discussion with a problem when just a sin-
gle atom (let say the atom A) flying through the crystal
is considered. We assume that the atom is on resonance
with the defect mode (i.e., ω = ω0). This corresponds to
the Jaynes-Cummings model [26] with a time-dependent
coupling constant. The general solution of this model for
real coupling parameter was found by Sherman et al. [27].
With the initial condition |Ψ(0)〉=|eA, 0〉 the solution can
be expressed as

|Ψ(t)〉 = cos
[∫ t

0

GA(t′)dt′
]
|eA, 0〉

− i sin
[∫ t

0

GA(t′)dt′
]
|gA, 1〉. (15)

This implies for the atomic excitation

P (A)
e (t) = cos2

[∫ t

0

GA(t′)dt′
]
. (16)

In the case of the defect mode with linear dimensions much
smaller than the side of the crystal we can use the approx-
imation ∫ t

0

GA(t′)dt′ ≈
∫ ∞
−∞

GA(t′)dt′. (17)

We note that this integral for a given choice of the profile
function (see Eq. (12)) with the phase of the field mode
Φ = 0 equals to zero. This means that the atom exits the
crystal in the same state as it entered it. Obviously the
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Fig. 3. (a) The time dependence of the coupling GA(t) be-
tween the defect mode and the single atom A when it moves
along the axis of the cylinder inside the crystal with the veloc-
ity vA = 500 m s−1. (b) The time evolution of the population
of the exited level of the single atom moving inside the crystal.

defect mode also remains in its initial (vacuum) state. In
Figure 3a we plot the time dependence of the coupling
constant between the atom A and the defect mode. While
in Figure 3b we present the time evolution of the pop-
ulation of the excited level of the atom. It is assumed
that the defect is located at the center R0 = 0 of the
crystal. The atom moves along the axis of the cylindrical
cavity with the velocity vA = 500 m s−1. The other pa-
rameters are chosen such that (see Eqs. (11, 12)) Φ = 0
rad, k = (0, 0, k), DA = ε = (1, 0, 0), Rdef = 10 mm.
The parameter k = (0, 0, π/a) with a ≈ 16.3 mm. The
integral (17) in this case is equal to zero. Consequently,
the atom at the exit of the crystal is again in its initial
state. From Figure 3a we clearly see that the atom on its
way through the crystal interacts with the defect mode
just around the center of the crystal. The other important
feature is seen from Figure 3b, i.e. the atom is transiently
entangled with the defect mode in the center of the crystal.
Nevertheless it leaves the crystal in a pure (unentangled)
state. This effect of “spontaneous” disentanglement of the
atom from the defect mode is very important when we
consider creation of pure entangled state of two atoms.
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Fig. 4. The time evolution of the populations of excited levels of the atoms A (solid line) and B (dashed line). The parameters
of the defect mode and the internal atomic parameters are chosen same as in Figure 3. The final values of the probability
amplitudes are presented directly in the figures.

4.2 Two atoms

Let us consider a situation when two atoms interact with
the same defect mode as in the previous case. The atoms
have their dipoles oriented along the direction ε of the
electric-field polarization. The velocity of the atom A is
500 m s−1. The time evolution of the corresponding atomic
populations for various velocities of the atomB are plotted
in Figure 4. The atom A enters the crystal in the excite
state, while the atomB is initially in the ground state. The
four plots corresponds to four different velocities of the
atom B (their numerical values are shown in the figures).

Firstly, we consider both atoms to have the same ve-
locity (see Fig. 4a). In this case we assume that the atom
A is displaced from the axis of the cylindrical hole through
which it flies (i.e. we add 0.3 mm to xA(0) given by (4)) to
avoid the influence of the RDDI between the atoms and
their collision. We see that the atoms strongly interact
with the field in the region of the defect. However, after
this interaction the initial state of the system is approxi-
mately restored (see the “stationary” values of the proba-
bility amplitudes a(τ), b(τ) and γ(τ) which are displayed
in the figures). It is interesting to compare Figure 3b with
Figure 4a to see how the time evolution of the popula-
tion of the atom A is modified due to the presence of the

atom B. We see that for the given set of parameters the
presence of the atom B does not influence dynamics of the
atom A significantly.

Now we will study how the level population depends
on the velocity of the atom B. From Figure 4 we see that
for properly chosen velocity the interaction between the
atoms mediated by the defect field can be pronounced.
For instance, from Figure 4b (here vB = 490 m s−1) we see
that not only the excitation of the atom B can be higher
than the population of the atom A, but also the defect
mode becomes partially excited and entangled with the
atomic system.

When the atom B has the velocity vB = 515 m s−1

(see Fig. 4c) then the defect mode in the stationary limit
is in the vacuum state [γ(τ) ' −0.0616i] and is (with the
high precision) disentangled from the atomic system. It
is interesting to note that in this particular situation the
defect mode mediates transfer of most of the excitation
from the atom A to the atom B.

Let us assume now the velocity of the atom B to be
vB = 532.8 m s−1 (see Fig. 4d). In this case the defect
mode in the stationary limit is again in the vacuum state
and is completely disentangled from the atomic system.
The amplitudes a(τ) and b(τ) are in this case almost equal,
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Fig. 5. The final atomic populations of the three atoms which interact with the defect mode in the crystal versus velocities vB ,
vC while vA = 500 m s−1. The defect region is displaced from the center with R0 = (1,−3, 2) mm. We chose the phase Φ = 0
and the other parameters (a and Rdef) are the same as in Figure 3.

which means that the atoms at the exit from the crystal
are in the state |Ψ〉 = (|eA, gB〉 + |gA, eB〉)/

√
2, i.e. they

are prepared in a pure maximally entangled state.

In the cases presented in Figure 4 the phase factor Φ
of the defect mode is set to zero so that the integrals of
the coupling constants GA(t) and GB(t) over the trajec-
tories of the atoms are equal to zero. The defect-mode
radius is taken to be Rdef = 10 mm. We have also studied
dynamics for other values of Φ, when the integrals of the
coupling constants differ from zeros. In this case the dis-
entanglement of the defect mode and the atoms is not so
well pronounced, i.e. the defect mode becomes excited. We
have also found a general feature: if the integrals of the
coupling constants are zeros and the coupling constants
are small enough then the defect mode after the interac-
tion is left in the vacuum state. However, if we increase
the couplings (by decreasing the mode volume Veff) the
defect mode can be left in an excited state (i.e. γ(τ) 6= 0;
see the expression for the state vector (2)). Consequently,
the atoms are left in a mixed state.

We have also analyzed the situation when the defect
mode is not located directly in the center of the crystal.
In addition we have assumed that Φ 6= 0. We have found
that even in this case it is possible to find a value vB at
which the atoms exit the crystal in a nearly pure maxi-
mally entangled state.

4.3 Three atoms

Let us consider the same setup as in our previous dis-
cussion except we assume three atoms flying through the
crystal (see Fig. 1). These three two-level Rydberg atoms
(A, B and C) are injected into the holes at the bottom
side of the crystal simultaneously. The atom A is ini-
tially in its upper level |eA〉 while atoms B and C are
initially in their lower states |gB〉 and |gC〉. The single
defect mode is initially prepared in its vacuum state |0〉.
The atoms move along the axes of the holes and interact
with the defect mode in the central region of the crys-
tal. The electric-field amplitude of the mode is given by
equation (12). We consider slightly asymmetric position
of the defect mode in the crystal (the reason is explained
below). In Figure 5 we present plots of the final atomic
populations versus velocities vB and vC while vA is fixed
at the value 500 m s−1. These plots show that by adjust-
ing the atomic velocities we can obtain required proba-
bilities such that in the final state (2) the probability
amplitude γ(τ) is equal to zero, which means that the
defect mode is decoupled from the atomic system. The
atoms are then in a pure superposition state. In partic-
ular, if we select the velocities as vB = 536.4 m s−1 and
vC = 527.4 m s−1, we obtain a final state with equal prob-
abilities |a(τ)|2 = |b(τ)|2 = |c(τ)|2 ≈ 0.33 (see Fig. 6),
while |γ(τ)| ' 0.02. It means that the atomic subsystem
is in a good approximation decoupled from the field sub-
system.
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Fig. 6. The time evolution of the atomic populations |a(t)|2
(solid line), |b(t)|2 (long dashed line), and |c(t)|2 (short dashed
line) for specially chosen velocities (see Sect. 4). All other pa-
rameters are the same as in Figure 5. We plot also the sum
|a(t)|2 + |b(t)|2 + |c(t)|2 (dotted line) which is close to unity.

We have chosen an asymmetric position of the defect
mode with respect to the center of the crystal because
for the symmetric position we were able to obtain the
“symmetric” result |a(τ)|2 = |b(τ)|2 = |c(τ)|2 ≈ 0.33 only
when two of the velocities are equal. In this case we face
the problem that the atoms can collide. We expect that
a better choice of the defect geometry might produce a
final state more disentangled from the field as is the case
presented in Figure 6.

We see from Figures 5 that the final atomic popula-
tions are rather robust with respect to changes in the ve-
locities, i.e. velocity fluctuations (which in experiments
can be reduced up to 0.4 m s−1 [11]) do not deteriorate
the predicted entanglement.

5 Conclusions

In this paper we have shown that atoms can be entangled
in the photonic crystals via the dipole interaction medi-
ated through the off-resonant modes or via the interaction
with a single defect mode. In the first mechanism (RDDI)
the atoms can coherently exchange excitation while only
a very small part of this energy is radiated into the field.
However, this interaction might not be easy to control
in an experiment because it requires a precise control of
the position of the atoms. The second mechanism (via
a single resonant defect mode) is experimentally more
promising because it can be realized with currently avail-
able microwave photonic crystals and with highly excited
Rydberg atoms.

We have shown that atoms can be prepared in pure en-
tangled states and that the probability amplitudes of the
generated superposition states of the atoms can be coher-
ently controlled by varying the velocities of the atoms or
by varying the orientations of the atomic dipoles. In our

scheme of entanglement the distance between the entan-
gled atoms is given by linear dimensions of the crystal pro-
viding the lifetime of the Rydberg states is large enough
to fly through the crystal. For the parameters used in this
paper the distance between the entangled atoms is of the
order of tens of centimeters.

Our scheme for entangling atoms can also be real-
ized in metallic cavities. In fact, Cirac and Zoller pro-
posed a similar scheme [9] which has been experimentally
realized [11]. In this paper, however, we consider that
two (or three) atoms interact with the field simultane-
ously while in the other schemes (see [9]) the atoms fly
through a cavity sequentially. There are other differences
between conditions of similar experiments in cavities and
in microwave photonic crystals. In particular, the shape
of the modal function of a defect mode is different from a
cavity-mode profile. The defect-mode shape can be rel-
atively easily designed and tuned in a photonic crystal
by adding or removing a piece of material of the crys-
tal. While inside a cavity there are several modes which
can interact with the microwave atomic transitions, a pho-
tonic crystal can be designed with only a single defect
mode inside the gap. Given the size of the microwave pho-
tonic crystals, the distance between entangled atoms can
be larger than in the case of microcavities. Nevertheless,
there is a serious problem with thermal effects when study-
ing atomic transitions at microwave frequencies. To avoid
the influence of thermal photons one has to consider the
photonic crystal to be cooled down to very low tempera-
tures (< 10 K). In spite of this problem we believe that
the investigation of dynamics of Rydberg atoms in pho-
tonic crystals might provide us with new possibilities how
to manipulate with atomic states and eventually how to
create multiparticle entangled states of atoms.
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